Pierre de Fermat |
![]() |
![]() |
Letztmalig dran rumgefummelt: 20.06.18 16:56:55 |
![]() |
Als Geburtsdatum galt lange Zeit der 17. August
1601; neuere Recherchen (siehe unten) haben jedoch ergeben, dass Fermat Ende
1607 oder Anfang 1608 geboren wurde. 1652 wurde er an das oberste Strafgericht befördert. 1653 erkrankte er an der Pest und wurde irrtümlich für tot erklärt. Fermat studierte von 1623 bis 1626 Zivilrecht an der Universität Orléans und schloss dieses Studium im Juli 1626 mit dem baccalaureus juris civilis ab. Im Herbst desselben Jahres ließ er sich als Anwalt am parlement de Bordeaux nieder, wo er bis Ende 1630 blieb. Dann kaufte er das Amt eines conseiller au parlement de Toulouse und wurde am 14. Mai 1631 in diesem Amt vereidigt. In der Zeit von 1643 bis 1653 widmete sich Fermat nicht verstärkt der Zahlentheorie (die Zeit seiner großen zahlentheoretischen Entdeckungen lag da bereits hinter ihm). Vielmehr wurde er durch die mannigfachen Verpflichtungen aus seinem Amt als conseiller so sehr in Anspruch genommen, dass ihm praktisch keine Zeit für seine mathematischen Forschungen blieb. Bauernaufstände im Languedoc wegen brutaler Steuereintreibungen, deren ungesetzliche und unmenschliche Praktiken von Fermat aufgedeckt wurden, und die in Südfrankreich besonders heftigen kriegerischen Auseinandersetzungen mit der Fronde, die auch Fermats Geburtsstadt Beaumont-de-Lomagne in Mitleidenschaft zogen, hielten das für den größten Teil Südfrankreichs politisch verantwortliche Parlament von Toulouse und auch Fermat in Atem. So gehörte Fermat zum Beispiel zu der Verhandlungskommission des königstreuen Parlaments von Toulouse, die mit den Generalständen des Languedoc, die sich auf die Seite der Fronde geschlagen hatten, langwierige Verhandlungen zur Wiederherstellung des Rechtsfriedens führte. Auch verhinderte Fermat durch mutigen persönlichen Einsatz die Zerstörung seiner Heimatstadt Beaumont durch königliche Truppen. |
||||||||
![]() |
1. Euklid von Alexandria 2. Hintergründe und Zusammenhänge - Einordnung in Klassen 3. Lösungsalgorithmen 4. Programmvorschläge 5. Zusammenfassung 6. Weiterführende Literatur 7. Linkliste zum Thema 8. Verwandte Themen |
||||||||
![]() |
|
||||||||
![]() |
Quellen: LOG IN - Heft 146/147 (2007) Seite 47 ff. |
1. Problembeschreibung |
![]() |
![]() |
![]() |
![]() |
Der Große Fermatsche Satz wurde im 17. Jahrhundert
von Pierre de Fermat formuliert, aber erst 1994 von Andrew Wiles bewiesen.
Als schlüssiger Höhepunkt für den Beweis gilt die Zusammenarbeit von Wiles
mit Richard Taylor, die sich neben dem endgültigen Beweis durch Wiles in
einer gleichzeitigen Veröffentlichung eines Teilbeweises von beiden, Wiles
und Taylor, als gemeinsame Autoren niederschlug. Der Satz besagt: Ist n eine natürliche Zahl größer als 2, so kann die n-te Potenz jeder natürlichen Zahl ungleich null nicht in die Summe zweier n-ter Potenzen natürlicher Zahlen ungleich null zerlegt werden. Formal bedeutet dies: Die Gleichung a^{n}+b^{n}=c^{n}} a^{n}+b^{n}=c^{n} ist für positive ganze Zahlen {\displaystyle
a,b,c,n} {\displaystyle a,b,c,n} unlösbar, wenn {\displaystyle n} n größer
als zwei ist. |
||
![]() |
|
2. Hintergründe, Zusammenhänge - Einordnung in Klassen |
![]() |
![]() |
![]() |
![]() |
Für kleine Mengen M ist das Problem empirisch durch ausprobieren möglich! Für große Mengen existieren allerdings keine anderen Verfahren, als genau diese: ausprobieren jeden Elements mit jedem - das sind dann aber schon bei 10 Elementen 210 Möglichkeiten. |
![]() |
3. Lösungsalgorithmus |
![]() |
![]() |
![]() |
![]() |
Nimm die vorgegebene Zahl - fülle sie auf vier Stellen auf. Ergibt sich Gleichheit in allen vier möglichen Stellen, so verabschieden wir uns von der Zahl - sie ist keine Zahl innerhalb des Definitionsbereiches - was wir selbstverständlich softwartechnisch exakt wegfangen, wobei wir Oma und/oder Katze nutzen! Wir erhalten in jedem Fall der verbleibenden Restmenge vier Stellen (ungleich in mindest einer Position) und bilden daraus die jeweils kleinste und größte ziffernfolge als Zahl. Von der jeweils größeren subtrahieren wir die jeweils kleinere und verfahren damit, bis wir entweder 6174 oder eine Tiefe von 7 erreicht haben (was im Worst-Case gleichzeitig eintritt). |
![]() |
4. Programmvorschläge |
![]() |
![]() |
![]() |
![]() |
Hannes Uhlig hat unser Vorschläge konsequent aufgegriffen und einschließlich der Problematik Oma und Katze ein Programm des Kaprekar-Algorithmus notiert, in welchem schon einige Kerngedanken eines sauberen - eben noch nicht objektorientierten Programmieirstils zusammenlaufen. |
![]() |
5. Zusammenfassung |
![]() |
![]() |
![]() |
![]() |
|
![]() |
6. Weiterführende Literatur |
![]() |
![]() |
![]() |
![]() |
|
![]() |
7. Links zum Thema |
![]() |
![]() |
![]() |
![]() |
|
![]() |
http://www.mathematische-basteleien.de/kaprekarzahl.htm |
8. Verwandte Themen |
![]() |
![]() |
![]() |
![]() |
Das Vorangestellte hilft wirtschaften, löst jedoch kein einziges Problem (allerdings ohne Beachtung der Worst-Case-Strategien wird man auch nicht erfolgreich Software entwickeln und/oder informatische Projekte realisieren können). Deshalb nunmehr das, was wirklich Arbeiten hilft. | ||||||||||||||||||||||||
![]() |
|
||||||||||||||||||||||||
![]() |
|
||||||||||||||||||||||||
![]() |
|
![]() zur Hauptseite |
© Samuel-von-Pufendorf-Gymnasium Flöha | © Frank Rost am 15. Januar 2008 |
... dieser Text wurde nach den Regeln irgendeiner Rechtschreibreform verfasst - ich hab' irgendwann einmal beschlossen, an diesem Zirkus nicht mehr teilzunehmen ;-) „Dieses Land braucht eine Steuerreform, dieses Land braucht eine Rentenreform - wir schreiben Schiffahrt mit drei „f“!“ Diddi Hallervorden, dt. Komiker und Kabarettist |
Diese Seite wurde ohne Zusatz irgendwelcher Konversationsstoffe erstellt ;-) |