Jakob I. Bernoulli (* 6. Januar 1655 in Basel; † 16. August 1705 ebenda) history menue Letztmalig dran rumgefummelt: 08.03.08 17:07:29

Jakob I. war der Sohn des Kaufmanns Niklaus Bernoulli und dessen Ehefrau Margarethe Schönauer, sowie Bruder des Mathematikers Johann Bernoulli. Nach dem Schulbesuch und erstem Unterricht durch den Vater studierte Jakob auf dessen Wunsch Philosophie und Theologie an der Universität Basel. 1671 erreichte er den Magister artium und 1676 das Lizenziat lic. theol.. Gegen den Willen des Vaters und fast autodidaktisch vertiefte er sich sehr in Mathematik und Astronomie.
In den Jahren 1676 bis 1689 hatte Jakob verschiedene Anstellungen als Hauslehrer in Genf inne. Während dieser Zeit reiste er auch mehrmals nach Frankreich. In den Jahren 1681 bis 1682 unternahm Jakob I. eine Art Kavalierstour durch Holland, Großbritannien und Deutschland. Während dieser Reisen lernte er nicht nur die cartesische Mathematik kennen, sondern u. a. auch Hudde, Boyle und Hooke. Viele seiner späteren Kontakte mit damals führenden Mathematikern sind aus dieser Zeit hervorgegangen.
Wieder zu Hause in Basel, hielt Jakob ab 1683 private Vorlesungen über Experimentalphysik an der Universität Basel. Während dieser Zeit studierte er u. a. die Géométrie von René Descartes sowie die Arbeiten von John Wallis und Isaac Barrow, worauf er begann, sich für die Infinitesimalrechnung zu interessieren. Im Jahr 1684 heiratete er Judith Stupanus, mit der er später zwei Kinder bekam. Im Gegensatz zu vielen anderen Mitgliedern der Familie Bernoulli waren beide weder in der Mathematik noch in der Physik aktiv.
Ab 1686 verwendete Jakob die vollständige Induktion, untersuchte wichtige Potenzreihen mit Hilfe der Bernoulli-Zahlen, und begründete die Wahrscheinlichkeitstheorie mit (siehe Bernoulli-Verteilung). Im Jahre 1687 wurde er zum Professor für Mathematik an der Universität Basel ernannt und begann zusammen mit seinem jüngeren Bruder und Schüler Johann Bernoulli, die Infinitesimalrechnung von Leibniz zu bearbeiten und anzuwenden. Die beiden Brüder benutzten als erste diesen neuen Calculus, ohne zum Umfeld von Leibniz zu gehören.
Bis 1689 hatte Jakob wesentliche Arbeiten zu Potenzreihen und zur Wahrscheinlichkeitsrechnung veröffentlicht, u.a. zum Gesetz der großen Zahl. In den frühen 1690er Jahren arbeitete er vor allem im Gebiet der Variationsrechnung, wo er wichtige Kurven und Differentialgleichungen untersuchte. 1697 zerstritt sich Jakob nach langjährigen Rivalitäten mit seinem Bruder Johann.
1699 wurde Jakob I. als Mitglied in die Akademie der Wissenschaften von Paris und zwei Jahre später in die von Berlin (Preußische Akademie der Wissenschaften) aufgenommen. Aus dieser Zeit korrespondierte er u.a. mit Gottfried Wilhelm Leibniz und Nicolas Fatio de Duillier.
Im Alter von 50 Jahren starb Jakob I. Bernoulli am 16. August 1705 in Basel; seine Professur in Basel wurde daraufhin von seinem Bruder Johann übernommen.
1. Carl Friedrich Gauß
2. Der "Kleine Gauß"
3. Lösungsalgorithmen
4. Programmvorschläge
5. Zusammenfassung
6. Weiterführende Literatur
7. Linkliste zum Thema
8. Verwandte Themen

Computergeschichte

Praktische Elementaralgorithmen

Jacob Bernoulli

begrenzt verwendbar - selbst aufpassen, ab welcher Stelle es Blödsinn wird ;-)

Informatik-Profi-Wissen

Quellen:

LOG IN - Heft 146/147 (2007) Seite 47 ff.

die Primzahlsuche - zumindest die ersten Beschreibungen sind trivial ;-)

die Pseudoprimzahlen


1. Problembeschreibung history menue scroll up

Eratosthenes von Kyrene (griechisch Ερατοσθένης ο Κυρηναίος, * ca. 284 v. Chr. in Kyrene; † 202 v. Chr. in Alexandria) war ein griechischer Mathematiker, Geograph, Geschichtsschreiber, Philologe und Dichter sowie Direktor der Bibliothek von Alexandria. Eratosthenes prägte den Begriff der Geographie.
Lehrer des sogenannten „Sohn des Wolfes“ waren u. a. Lysanias von Kyrene und Ariston von Chios. Ariston war ein Philosoph und studierte bei Zenon von Kition, dem Begründer der stoischen Philosophie, die ihre Wurzeln im hellenistischen Zeitalter und ihren stärksten Ausdruck Jahrhunderte später bei Seneca und Marcus Aurelius fand. Ein anderer Lehrer von Eratosthenes war Kallimachos, ein Poet, der ebenfalls aus Kyrene stammte. Eratosthenes studierte in Athen, dem kulturellen Zentrum der hellenistischen Welt.
Zu der Zeit, als Eratosthenes nach Alexandria in Ägypten kam, war die Bibliothek von Alexandria von Ptolemaios II. fertiggestellt worden. Dieser hatte Kallimachos zum zweiten Bibliothekar ernannt, und als Ptolemaios III. Euergetes seinen Vater als König von Ägypten beerbte, überzeugte er Eratosthenes, nach Alexandria zu kommen, um seinen Sohn Philopator zu unterrichten. Kallimachos starb 236 v. Chr., und Eratosthenes wurde der dritte Bibliothekar der Bücherei, welche bis dahin schon Hunderttausende von Schriftrollen enthielt, eine Zusammenfassung des Wissens der bekannten Welt.
 

Ferma'scher Würfel

Download des aktuellen Projektzustandes

 


2. Hintergründe, Zusammenhänge - Einordnung in Klassen history menue scroll up

Für kleine Mengen M ist das Problem empirisch durch ausprobieren möglich! Für große Mengen existieren allerdings keine anderen Verfahren, als genau diese: ausprobieren jeden Elements mit jedem - das sind dann aber schon bei 10 Elementen 210 Möglichkeiten.
 
 


3. Lösungsalgorithmus history menue scroll up
Nimm die vorgegebene Zahl - fülle sie auf vier Stellen auf. Ergibt sich Gleichheit in allen vier möglichen Stellen, so verabschieden wir uns von der Zahl - sie ist keine Zahl innerhalb des Definitionsbereiches - was wir selbstverständlich softwartechnisch exakt wegfangen, wobei wir Oma und/oder Katze nutzen! Wir erhalten in jedem Fall der verbleibenden Restmenge vier Stellen (ungleich in mindest einer Position) und bilden daraus die jeweils kleinste und größte ziffernfolge als Zahl. Von der jeweils größeren subtrahieren wir die jeweils kleinere und verfahren damit, bis wir entweder 6174 oder eine Tiefe von 7 erreicht haben (was im Worst-Case gleichzeitig eintritt).
 
 


4. Programmvorschläge history menue scroll up

Hannes Uhlig hat unser Vorschläge konsequent aufgegriffen und einschließlich der Problematik Oma und Katze ein Programm des Kaprekar-Algorithmus notiert, in welchem schon einige Kerngedanken eines sauberen - eben noch nicht objektorientierten Programmieirstils zusammenlaufen.
 
 


5. Zusammenfassung history menue scroll up

 
 
 
 


6. Weiterführende Literatur history menue scroll up

 
 
 
 


7. Links zum Thema history menue scroll up

 
http://www.mathematische-basteleien.de/kaprekarzahl.htm
 


8. Verwandte Themen history menue scroll up

Das Vorangestellte hilft wirtschaften, löst jedoch kein einziges Problem (allerdings ohne Beachtung der Worst-Case-Strategien wird man auch nicht erfolgreich Software entwickeln und/oder informatische Projekte realisieren können). Deshalb nunmehr das, was wirklich Arbeiten hilft.

das 8-Dame-Problem

des Cliquen-Problem

Domino-Problem

das Entscheidbarkeitsproblem

das Erfüllbarkeitsproblem

die Fibonacci-Zahlen

das Flaggenproblem

das Halteproblem

das Hamilton-Problem

das K-Farben-Problem

der Kaprekar-Algorithmus

die Magischen Quadrate

das PASCAL'sche Dreiecksproblem

das Philosophenproblem

das Königsberger-Brückenproblem

das Post'schen Korrespondenzproblem

das Rundreiseproblem

das Springer-Problem

die Türme von Hanoi

das Wortproblem

das Wüstenfit-Problem

das 153-Problem

   

Worst-Case-Denken

Algorithmentheorie

Komplexität, Mächtigkeit und Aufwand

Praktische Elementaralgorithmen

Lösbarkeit und Problemlösungsstrategien

Klassische algorithmisch lösbare Probleme

Zufall und Computer

Graphentheorie

Petri-Netze

Informationsbegriff

Logo für die Signale

Nachrichten

Wissen

Systembegriff

Modellbegriff

Simulation

Denken und Sprache

Zahlen, Daten und Datentypen

Gegenläufigkeit und Verklemmung

Pattern-Matching

 



zur Hauptseite
© Samuel-von-Pufendorf-Gymnasium Flöha © Frank Rost am 8. März 2008

... dieser Text wurde nach den Regeln irgendeiner Rechtschreibreform verfasst - ich hab' irgendwann einmal beschlossen, an diesem Zirkus nicht mehr teilzunehmen ;-)

„Dieses Land braucht eine Steuerreform, dieses Land braucht eine Rentenreform - wir schreiben Schiffahrt mit drei „f“!“

Diddi Hallervorden, dt. Komiker und Kabarettist

Diese Seite wurde ohne Zusatz irgendwelcher Konversationsstoffe erstellt ;-)