George Boole (* 2. November 1815 in Lincoln, England; † 8. Dezember 1864 in Ballintemple, in der Grafschaft Cork, Irland) history menue Letztmalig dran rumgefummelt: 04.12.09 06:46:25

George Boole (* 2. November 1815 in Lincoln, England; † 8. Dezember 1864 in Ballintemple, in der Grafschaft Cork, Irland) war ein englischer Mathematiker (Autodidakt), Logiker und Philosoph. Seine Bedeutung für die Entwicklung des Computers als "logisch" kalkulierenden Autometen ist praktisch "überdimensional" - sie bildet die technische Grundlage für faktisch alles, was intern im rechner abläuft.
1. George Boole
2. Der "Kleine Gauß"
3. Lösungsalgorithmen
4. Programmvorschläge
5. Zusammenfassung
6. Weiterführende Literatur
7. Linkliste zum Thema
8. Verwandte Themen

Computergeschichte

George Boole

begrenzt verwendbar - selbst aufpassen, ab welcher Stelle es Blödsinn wird ;-)

Informatik-Profi-Wissen

Quellen:

LOG IN - Heft 146/147 (2007) Seite 47 ff.


1. George Boole history menue scroll up

Boole war ursprünglich als Lehrer tätig. Auf Grund seiner wissenschaftlichen Arbeiten wurde er 1848 Mathematikprofessor am Queens College in Cork (Irland). George Boole ist der Vater der Schriftstellerin Ethel Lilian Voynich, die 1864 geboren wurde, und von Alicia Boole Stott (1860–1940), der es ohne formale Vorbildung als Amateur-Mathematikerin gelang, die regulären Polyeder in vier Dimensionen zu klassifizieren.
Hauptwerk

Boole schuf in seiner Schrift The Mathematical Analysis of Logic von 1847 den ersten algebraischen Logikkalkül und begründete damit die moderne mathematische Logik, die sich von der traditionellen philosophischen Logik durch eine konsequente Formalisierung abhebt. Er formalisierte die klassische Logik und Aussagenlogik und entwickelte ein Entscheidungsverfahren für die wahren Formeln über eine disjunktive Normalform. Boole nahm damit – da aus der Entscheidbarkeit der klassischen Logik ihre Vollständigkeit und Widerspruchsfreiheit folgt – schon gut 70 Jahre vor Hilberts Programm für ein zentrales Logikgebiet die Lösung der von David Hilbert gestellten Probleme vorweg. Aus Booles Logikkalkül wurden später die sogenannte boolesche Algebra und der boolesche Ring entwickelt.

Booles Originalkalkül

Boole benützte für seinen Logikkalkül die damals bekannte Algebra, die heute als Potenzreihen-Ring über dem Körper der reellen Zahlen präzisiert wird. In diese Algebra bettete er die klassische Logik ein, indem er die Konjunktion „x und y“ als Multiplikation xy und die Negation „nicht x“ als 1−x formalisierte. Es handelt sich dabei um eine echte Einbettung, in der nicht alle Terme einen logischen Sinn haben; für die logisch bedeutsamen Terme forderte er die Idempotenz xx=x, die in der Algebra nicht allgemein gilt, zum Beispiel nicht für die Addition x+y und negative Terme −x.
Boole entwarf seinen Kalkül primär als Klassenlogik, in dem 1 das Universum (die Allklasse) ist und die Unbestimmten x, y, z... Klassen repräsentieren. Innerhalb dieses Klassenkalküls stellte er dann die traditionelle Syllogistik dar. Die zwei grundlegenden Syllogistik-Prädikate repräsentierte er durch Gleichungen, nämlich „Alle x sind y“ durch x=xy und „Keine x sind y“ durch xy=0. Diese Gleichungen dienten ihm als Regeln, mit denen er die aristotelisch-scholastischen Syllogismen auf metalogischer Ebene herleitete.
Sekundär gebrauchte Boole seinen Kalkül auch als Aussagenlogik, in dem die Unbestimmten x, y, z... Aussagen repräsentieren. Die Disjunktion „x oder y“ formalisierte er durch den Term x+y−xy und die Alternative „entweder x oder y“ durch x−2(xy)+y und zwar über folgende algebraische Herleitung:
Die Disjunktion „x oder y“ definierte er als „nicht (nicht x und nicht y)“. Seine Einbettung liefert 1−(1−x)(1−y), ausmultipliziert und zusammengefasst entsteht x+y−xy.
Die Alternative „entweder x oder y“ definierte er als „(x oder y) und nicht (x und y)“. Seine Einbettung liefert (x+y−xy)(1−xy), ausmultipliziert und zusammengefasst (mit der Idempotenz) entsteht x−2(xy)+y.
Mit Gleichungen erfasste er die Wahrheit und Falschheit von Aussagen, nämlich „x ist wahr“ durch x=1 und „x ist falsch“ durch x=0. Er benutzte hier also 0 und 1 als Wahrheitswerte. Sein logisches Entscheidungsverfahren über eine Normalform ergänzte er durch ein gleichwertiges semantisches Entscheidungsverfahren mit Modulen einer Funktion, das sind Wahrheitswert-Einsetzungen in boolesche Funktionen, die jedem belegten logischen Term einen Wahrheitswert zuordnen. Dieses Verfahren entspricht dem Entscheidungsverfahren mit Wahrheitstafeln, das zur Ermittlung von Tautologien dient.

Was man mit dem Bool'schen Aussagenkalkül praktisch anfangen kann, zeigen wir nachfolgend

Logikprojekt 2006

Logikprojekt 2009

Praktischer Entwurf von Logikschaltungen


2. Hintergründe, Zusammenhänge - Einordnung in Klassen history menue scroll up

Für kleine Mengen M ist das Problem empirisch durch ausprobieren möglich! Für große Mengen existieren allerdings keine anderen Verfahren, als genau diese: ausprobieren jeden Elements mit jedem - das sind dann aber schon bei 10 Elementen 210 Möglichkeiten.
 
 


3. Lösungsalgorithmus history menue scroll up
Nimm die vorgegebene Zahl - fülle sie auf vier Stellen auf. Ergibt sich Gleichheit in allen vier möglichen Stellen, so verabschieden wir uns von der Zahl - sie ist keine Zahl innerhalb des Definitionsbereiches - was wir selbstverständlich softwartechnisch exakt wegfangen, wobei wir Oma und/oder Katze nutzen! Wir erhalten in jedem Fall der verbleibenden Restmenge vier Stellen (ungleich in mindest einer Position) und bilden daraus die jeweils kleinste und größte ziffernfolge als Zahl. Von der jeweils größeren subtrahieren wir die jeweils kleinere und verfahren damit, bis wir entweder 6174 oder eine Tiefe von 7 erreicht haben (was im Worst-Case gleichzeitig eintritt).
 
 


4. Programmvorschläge history menue scroll up

Hannes Uhlig hat unser Vorschläge konsequent aufgegriffen und einschließlich der Problematik Oma und Katze ein Programm des Kaprekar-Algorithmus notiert, in welchem schon einige Kerngedanken eines sauberen - eben noch nicht objektorientierten Programmieirstils zusammenlaufen.
 
 


5. Zusammenfassung history menue scroll up

 
 


6. Weiterführende Literatur history menue scroll up

 
 


7. Links zum Thema history menue scroll up

 
http://www.mathematische-basteleien.de/kaprekarzahl.htm


8. Verwandte Themen history menue scroll up

Das Vorangestellte hilft wirtschaften, löst jedoch kein einziges Problem (allerdings ohne Beachtung der Worst-Case-Strategien wird man auch nicht erfolgreich Software entwickeln und/oder informatische Projekte realisieren können). Deshalb nunmehr das, was wirklich Arbeiten hilft.

das 8-Dame-Problem

des Cliquen-Problem

Domino-Problem

das Entscheidbarkeitsproblem

das Erfüllbarkeitsproblem

die Fibonacci-Zahlen

das Flaggenproblem

das Halteproblem

das Hamilton-Problem

das K-Farben-Problem

der Kaprekar-Algorithmus

die Magischen Quadrate

das PASCAL'sche Dreiecksproblem

das Philosophenproblem

das Königsberger-Brückenproblem

das Post'schen Korrespondenzproblem

das Rundreiseproblem

das Springer-Problem

die Türme von Hanoi

das Wortproblem

das Wüstenfit-Problem

das 153-Problem

   

Worst-Case-Denken

Algorithmentheorie

Komplexität, Mächtigkeit und Aufwand

Praktische Elementaralgorithmen

Lösbarkeit und Problemlösungsstrategien

Klassische algorithmisch lösbare Probleme

Zufall und Computer

Graphentheorie

Petri-Netze

Informationsbegriff

Logo für die Signale

Nachrichten

Wissen

Systembegriff

Modellbegriff

Simulation

Denken und Sprache

Zahlen, Daten und Datentypen

Gegenläufigkeit und Verklemmung

Pattern-Matching

 



zur Hauptseite
© Samuel-von-Pufendorf-Gymnasium Flöha © Frank Rost am 2. Dezember 2009 um 17.42 Uhr

... dieser Text wurde nach den Regeln irgendeiner Rechtschreibreform verfasst - ich hab' irgendwann einmal beschlossen, an diesem Zirkus nicht mehr teilzunehmen ;-)

„Dieses Land braucht eine Steuerreform, dieses Land braucht eine Rentenreform - wir schreiben Schiffahrt mit drei „f“!“

Diddi Hallervorden, dt. Komiker und Kabarettist

Diese Seite wurde ohne Zusatz irgendwelcher Konversationsstoffe erstellt ;-)