Das Schachspiel |
![]() |
![]() |
Letztmalig dran rumgefummelt: 27.08.13 14:45:17 |
![]() |
Die Baronin von Birlinghoven hat ihren beiden
Töchtern eine Truhe voller Goldmünzen hinterlassen. Ihr Testament bestimmt,
dass das Gold einem benachbarten Kloster zukommt, falls es den Töchtern
nicht gelingt, den Inhalt der Truhe wertmäßig genau in zwei Hälften
untereinander aufzuteilen. Die Goldmünzen haben nur ganzzahlige Werte. Beispiel: Eine Truhe Goldmünzen mit den Werten 1, 9, 5, 3, 8 Taler könnten die Töchter in die Hälften 1, 9,3 Taler und 5, 8 Taler teilen. Eine Truhe mit den Werten 1, 9, 7, 3, 8 Taler fiele an das Kloster, weil die Aufteilung nicht möglich ist. Aufgabe: Schreibe ein Programm, das bei Eingabe einer Folge ganzer Zahlen für die in der Truhe vorkommenden Werte die beiden Erbteile genau aufzählt, andernfalls das Erbe dem Kloster zuspricht, wenn eine Aufteilung nicht möglich ist. Erstelle mindestens fünf Beispiele mit verschiedenen Truheninhalten. Der Inhalt einer Truhe sei 15, 27, 39, 7, 23,56,13. 39; 22, 5, 42, 34 Taler. |
||||||
![]() |
1. Geschichte 2. Hintergründe und Zusammenhänge - Einordnung in Klassen 3. Das Spiel 4. Computerschach & Programmvorschläge 5. Zusammenfassung 6. Weiterführende Literatur 7. Linkliste zum Thema 8. Verwandte Themen |
||||||
![]() |
|
||||||
![]() |
Quellen: LOG IN - Heft 146/147 (2007) Seite 47 ff. |
1. Problembeschreibung |
![]() |
![]() |
![]() |
![]() |
Gegeben sei eine endliche Mengen ganzer Zahlen im Bereich von - ∞ bis + ∞, wobei die Frage lautet, ob sich die Gasamtmenge in jeweils wertmäßig gleiche Teile zerlegen lässt, wobei die gegebenen Zahlen immer den jeweiligen Teilen zugeordnet werden müssen? |
![]() |
|
Für kleine Mengen M ist das Problem empirisch durch ausprobieren möglich
- Beispiel:
|
2. Hintergründe, Zusammenhänge - Einordnung in Klassen |
![]() |
![]() |
![]() |
![]() |
Für kleine Mengen M ist das Problem empirisch durch ausprobieren möglich! Für große Mengen existieren allerdings keine anderen Verfahren, als genau diese: ausprobieren jeden Elements mit jedem - das sind dann aber schon bei 10 Elementen 210 Möglichkeiten. |
![]() |
|
![]() |
3. Lösungsalgorithmus |
![]() |
![]() |
![]() |
![]() |
Nimm die vorgegebene Zahl - fülle sie auf vier Stellen auf. Ergibt sich Gleichheit in allen vier möglichen Stellen, so verabschieden wir uns von der Zahl - sie ist keine Zahl innerhalb des Definitionsbereiches - was wir selbstverständlich softwartechnisch exakt wegfangen, wobei wir Oma und/oder Katze nutzen! Wir erhalten in jedem Fall der verbleibenden Restmenge vier Stellen (ungleich in mindest einer Position) und bilden daraus die jeweils kleinste und größte ziffernfolge als Zahl. Von der jeweils größeren subtrahieren wir die jeweils kleinere und verfahren damit, bis wir entweder 6174 oder eine Tiefe von 7 erreicht haben (was im Worst-Case gleichzeitig eintritt). |
![]() |
4. Computerschach & Programmvorschläge |
![]() |
![]() |
![]() |
![]() |
Hannes Uhlig hat unser Vorschläge konsequent aufgegriffen und einschließlich der Problematik Oma und Katze ein Programm des Kaprekar-Algorithmus notiert, in welchem schon einige Kerngedanken eines sauberen - eben noch nicht objektorientierten Programmieirstils zusammenlaufen. | ||||||
![]() |
|
||||||
![]() |
5. Zusammenfassung |
![]() |
![]() |
![]() |
![]() |
|
![]() |
|
![]() |
|
![]() |
6. Weiterführende Literatur |
![]() |
![]() |
![]() |
![]() |
|
![]() |
|
![]() |
|
![]() |
7. Links zum Thema |
![]() |
![]() |
![]() |
![]() |
|
![]() |
http://www.mathematische-basteleien.de/kaprekarzahl.htm |
![]() |
8. Verwandte Themen |
![]() |
![]() |
![]() |
![]() |
Das Vorangestellte hilft wirtschaften, löst jedoch kein einziges Problem (allerdings ohne Beachtung der Worst-Case-Strategien wird man auch nicht erfolgreich Software entwickeln und/oder informatische Projekte realisieren können). Deshalb nunmehr das, was wirklich Arbeiten hilft. | ||||||||||||||||||||||||
![]() |
|
||||||||||||||||||||||||
![]() |
|
||||||||||||||||||||||||
![]() |
|
![]() zur Hauptseite |
© Samuel-von-Pufendorf-Gymnasium Flöha | © Frank Rostam 3. Januar 2010 um 20.49 Uhr |
... dieser Text wurde nach den Regeln irgendeiner Rechtschreibreform verfasst - ich hab' irgendwann einmal beschlossen, an diesem Zirkus nicht mehr teilzunehmen ;-) „Dieses Land braucht eine Steuerreform, dieses Land braucht eine Rentenreform - wir schreiben Schiffahrt mit drei „f“!“ Diddi Hallervorden, dt. Komiker und Kabarettist |
Diese Seite wurde ohne Zusatz irgendwelcher Konversationsstoffe erstellt ;-) |