Die Primzahl-Zwillingssuche history menue Letztmalig dran rumgefummelt: 27.05.08 15:02:00

Primzahlzwillinge sind sehr selten und existieren aus Sicht des Schreibers dieser Zeilen mit derzeitigem Erkenntnisstand in großer Dichte nur im unteren Bereich des Systems der natürlichen Zahlen. Definiert sind sie dadurch, dass der Abstand zweier benachbarter Primzahlen gleich zwei ist - also schau'n wer moal ;-)
1. Problembeschreibung
2. Hintergründe und Zusammenhänge - Einordnung in Klassen
3. Lösungsalgorithmen
4. Programmvorschläge
5. Zusammenfassung
6. Weiterführende Literatur
7. Linkliste zum Thema
8. Verwandte Themen

Probleme & Problemlösungsverfahren

Logo für die Primzahl-Zwillingssuche

Informatik-Profi-Wissen

Quellen:

LOG IN - Heft 146/147 (2007) Seite 47 ff.


1. Problembeschreibung history menue scroll up

Primzahlzwillinge nennt man zwei Primzahlen p1 und p2, deren Differenz p2p1 = 2 ist. Die Primzahl p2 = p1 + 2 wird dabei auch als Primzahlzwilling zur Primzahl p1 bezeichnet.
 
 


2. Hintergründe, Zusammenhänge - Einordnung in Klassen history menue scroll up

Für kleine Mengen M ist das Problem empirisch durch ausprobieren möglich! Für große Mengen existieren allerdings keine anderen Verfahren, als genau diese: ausprobieren jeden Elements mit jedem - das sind dann aber schon bei 10 Elementen 210 Möglichkeiten.
Jede ganze Zahl lässt sich in der Form 6n-2, 6n-1, 6n, 6n+1, 6n+2 oder 6n+3 darstellen (mit einer ganzen Zahl n). Primzahlen (außer 2 und 3) haben aber nicht die Form 6n-2, 6n, 6n+2, 6n+3, da alle solchen Zahlen durch 2 oder durch 3 (oder sogar durch 6) teilbar sind.

Daher hat jede Primzahl (außer 2 und 3) die Form 6n-1 oder 6n+1. Wenn nun (p, p+2) Primzahlzwillinge sind, ist p auch nicht von der Form 6n+1. Also gilt: Wenn (p, q) Primzahlzwillinge sind, dann ist p von der Form 6n-1 und q von der Form 6n+1.

Daraus folgt auch, dass p*q+1 eine durch 36 teilbare Quadratzahl ist:

(6n-1) \cdot (6n+1) + 1 = 36n^2 - 1 + 1 = 36n^2 = (6n)^2.
n (6n-1) (6n+1)
1 5 7
2 11 13
3 17 19
5 29 31
7 41 43
10 59 61
12 71 73
17 101 103
18 107 109
23 137 139
25 149 151
30 179 181
n (6n-1) (6n+1)
32 191 193
33 197 199
38 227 229
40 239 241
45 269 271
47 281 283
52 311 313
58 347 349
70 419 421
72 431 433
77 461 463
87 521 523
n (6n-1) (6n+1)
95 569 571
100 599 601
103 617 619
107 641 643
110 659 661
135 809 811
137 821 823
138 827 829
143 857 859
147 881 883
170 1019 1021
172 1031 1033
n (6n-1) (6n+1)
175 1049 1051
177 1061 1063
182 1091 1093
192 1151 1153
205 1229 1231
213 1277 1279
215 1289 1291
217 1301 1303
220 1319 1321
238 1427 1429
242 1451 1453
247 1481 1483
n (6n-1) (6n+1)
248 1487 1489
268 1607 1609
270 1619 1621
278 1667 1669
283 1697 1699
287 1721 1723
298 1787 1789
312 1871 1873
313 1877 1879
322 1931 1933
325 1949 1951
333 1997 1999
n (6n-1) (6n+1)
338 2027 2029
347 2081 2083
348 2087 2089
352 2111 2113
355 2129 2131
357 2141 2143
373 2237 2239
378 2267 2269
385 2309 2311
390 2339 2341
397 2381 2383
425 2549 2551

Mit Ausnahme von n=1 ist die letzte Ziffer eines n eine 0, 2, 3, 5, 7 oder eine 8, da im anderen Fall eine der beiden Zahlen 6n-1 bzw. 6n+1 durch 5 teilbar und damit keine Primzahl wäre.


Mit einer ganzen Zahl n lässt sich jede ungerade Zahl in der Form 30n+1, 30n+3, 30n+5, 30n+7, ..., 30n+25, 30n+27, 30n+29 (bzw. letztere besser als 30n-1) darstellen. Primzahlen (außer 3 und 5) haben aber nie die Form 30n+3, 30n+5, 30n+9, 30n+15, 30n+21, 30n+25 und 30n+27, da alle solchen Zahlen durch 2, durch 3 oder durch 5 teilbar sind.

Daher hat jedes Primzahlzwillingspaar (außer (3,5) und (5,7)) genau eine der drei Formen

       (30n-1, 30n+1), (30n+11, 30n+13), (30n+17, 30n+19)

(bzw. letzteres alternativ, da symmetrischer, als (30n-13, 30n-11)) (mit einer ganzen Zahl n).

 


3. Lösungsalgorithmus history menue scroll up
Nimm die vorgegebene Zahl - fülle sie auf vier Stellen auf. Ergibt sich Gleichheit in allen vier möglichen Stellen, so verabschieden wir uns von der Zahl - sie ist keine Zahl innerhalb des Definitionsbereiches - was wir selbstverständlich softwartechnisch exakt wegfangen, wobei wir Oma und/oder Katze nutzen! Wir erhalten in jedem Fall der verbleibenden Restmenge vier Stellen (ungleich in mindest einer Position) und bilden daraus die jeweils kleinste und größte ziffernfolge als Zahl. Von der jeweils größeren subtrahieren wir die jeweils kleinere und verfahren damit, bis wir entweder 6174 oder eine Tiefe von 7 erreicht haben (was im Worst-Case gleichzeitig eintritt).
 


4. Programmvorschläge history menue scroll up

Wir suchen alle Primzahlen und schaufeln sie in ein Feld - anschließend ermitteln wir von zwei benachbarten gefunden Primzahlen die Differenz - ist diese gleich zwei, so haben wir ein Primzahlzwilligspaar gefunden.
   

Primzahlzwillinge direkt suchen - große Rechenzeit für große Zahlen ;-)


5. Zusammenfassung history menue scroll up

 
 


6. Weiterführende Literatur history menue scroll up

 
 


7. Links zum Thema history menue scroll up

 
http://de.wikipedia.org/wiki/Primzahlzwilling
 


8. Verwandte Themen history menue scroll up

Das Vorangestellte hilft wirtschaften, löst jedoch kein einziges Problem (allerdings ohne Beachtung der Worst-Case-Strategien wird man auch nicht erfolgreich Software entwickeln und/oder informatische Projekte realisieren können). Deshalb nunmehr das, was wirklich Arbeiten hilft.

das 8-Dame-Problem

des Cliquen-Problem

Domino-Problem

das Entscheidbarkeitsproblem

das Erfüllbarkeitsproblem

die Fibonacci-Zahlen

das Flaggenproblem

das Halteproblem

das Hamilton-Problem

das K-Farben-Problem

der Kaprekar-Algorithmus

die Magischen Quadrate

das PASCAL'sche Dreiecksproblem

das Philosophenproblem

das Königsberger-Brückenproblem

das Post'schen Korrespondenzproblem

das Rundreiseproblem

das Springer-Problem

die Türme von Hanoi

das Wortproblem

das Wüstenfit-Problem

das 153-Problem

   

Worst-Case-Denken

Algorithmentheorie

Komplexität, Mächtigkeit und Aufwand

Praktische Elementaralgorithmen

Lösbarkeit und Problemlösungsstrategien

Klassische algorithmisch lösbare Probleme

Zufall und Computer

Graphentheorie

Petri-Netze

Informationsbegriff

Logo für die Signale

Nachrichten

Wissen

Systembegriff

Modellbegriff

Simulation

Denken und Sprache

Zahlen, Daten und Datentypen

Gegenläufigkeit und Verklemmung

Pattern-Matching

 



zur Hauptseite
© Samuel-von-Pufendorf-Gymnasium Flöha © Frank Rost am 24. Dezember 2007

... dieser Text wurde nach den Regeln irgendeiner Rechtschreibreform verfasst - ich hab' irgendwann einmal beschlossen, an diesem Zirkus nicht mehr teilzunehmen ;-)

„Dieses Land braucht eine Steuerreform, dieses Land braucht eine Rentenreform - wir schreiben Schiffahrt mit drei „f“!“

Diddi Hallervorden, dt. Komiker und Kabarettist

Diese Seite wurde ohne Zusatz irgendwelcher Konversationsstoffe erstellt ;-)